

Package ‘scMerge’

February 19, 2026

Type Package

Title scMerge: Merging multiple batches of scRNA-seq data

Version 1.26.0

Description Like all gene expression data, single-cell data suffers from batch effects and other unwanted variations that makes accurate biological interpretations difficult. The scMerge method leverages factor analysis, stably expressed genes (SEGs) and (pseudo-) replicates to remove unwanted variations and merge multiple single-cell data. This package contains all the necessary functions in the scMerge pipeline, including the identification of SEGs, replication-identification methods, and merging of single-cell data.

License GPL-3

Encoding UTF-8

LazyData false

Depends R (>= 3.6.0)

Imports BiocParallel, BiocSingular, BiocNeighbors, cluster, DelayedArray, DelayedMatrixStats, distr, igraph, M3Drop (>= 1.9.4), proxyC, ruv, cvTools, scater, batchelor, scran, methods, S4Vectors (>= 0.23.19), SingleCellExperiment (>= 1.7.3), SummarizedExperiment

RoxygenNote 7.2.3

Suggests BiocStyle, covr, HDF5Array, knitr, Matrix, rmarkdown, scales, proxy, testthat, badger

VignetteBuilder knitr

biocViews BatchEffect, GeneExpression, Normalization, RNASeq, Sequencing, SingleCell, Software, Transcriptomics

URL <https://github.com/SydneyBioX/scMerge>

BugReports <https://github.com/SydneyBioX/scMerge/issues>

git_url <https://git.bioconductor.org/packages/scMerge>

git_branch RELEASE_3_22

git_last_commit d9249c9

git_last_commit_date 2025-10-29

Repository Bioconductor 3.22

Date/Publication 2026-02-18

Author Yingxin Lin [aut, cre],
 Kevin Wang [aut],
 Sydney Bioinformatics and Biometrics Group [fnd]

Maintainer Yingxin Lin <yingxin.lin@sydney.edu.au>

Contents

example_sce	2
fastRUVIII	3
getAdjustedMat	4
rvuSimulate	5
sce_cbind	7
scMerge	8
scMerge2	10
scMerge2h	12
scReplicate	14
scRUVg	16
scRUVIII	17
scSEGIndex	19
segList	20
segList_ensemblGeneID	21

Index

22

example_sce

Subsetted mouse ESC ‘SingleCellExperiment‘ object

Description

A dataset containing 300 cells and 2026 genes from two batches of mouse ESC data

Usage

```
data(example_sce, package = 'scMerge')
```

Format

A ‘SingleCellExperiment‘ object

Source

<https://www.ebi.ac.uk/arrayexpress/experiments/E-MTAB-2600/>

References

Kolodziejczyk et al.

<code>fastRUVIII</code>	<i>A fast version of the <code>ruv::RUVIII</code> algorithm</i>
-------------------------	---

Description

Perform a fast version of the `ruv::RUVIII` algorithm for scRNA-Seq data noise estimation

Usage

```
fastRUVIII(
  Y,
  M,
  ctl,
  k = NULL,
  eta = NULL,
  svd_k = 50,
  include.intercept = TRUE,
  average = FALSE,
  BPPARAM = SerialParam(),
  BSPARAM = ExactParam(),
  fullalpha = NULL,
  return.info = FALSE,
  inputcheck = TRUE
)
```

Arguments

<code>Y</code>	The unnormalised scRNA-Seq data matrix. A m by n matrix, where m is the number of observations and n is the number of features.
<code>M</code>	The replicate mapping matrix. The mapping matrix has m rows (one for each observation), and each column represents a set of replicates. The (i, j) -th entry of the mapping matrix is 1 if the i -th observation is in replicate set j , and 0 otherwise. See <code>ruv::RUVIII</code> for more details.
<code>ctl</code>	An index vector to specify the negative controls. Either a logical vector of length n or a vector of integers.
<code>k</code>	The number of unwanted factors to remove. This is inherited from the <code>ruvK</code> argument from the <code>scMerge::scMerge</code> function.
<code>eta</code>	Gene-wise (as opposed to sample-wise) covariates. See <code>ruv::RUVIII</code> for details.
<code>svd_k</code>	If <code>BSPARAM</code> is set to <code>RandomParam</code> or <code>Ir1baParam</code> class from <code>BiocSingular</code> package, then <code>svd_k</code> will be used to reduce the computational cost of singular value decomposition. Default to 50.
<code>include.intercept</code>	When <code>eta</code> is specified (not <code>NULL</code>) but does not already include an intercept term, this will automatically include one. See <code>ruv::RUVIII</code> for details.
<code>average</code>	Average replicates after adjustment. See <code>ruv::RUVIII</code> for details.
<code>BPPARAM</code>	A <code>BiocParallelParam</code> class object from the <code>BiocParallel</code> package is used. Default is <code>SerialParam()</code> .
<code>BSPARAM</code>	A <code>BiocSingularParam</code> class object from the <code>BiocSingular</code> package is used. Default is <code>ExactParam()</code> .

fullalpha	Not used. Please ignore. See <code>ruv::RUVIII</code> for details.
return.info	Additional information relating to the computation of normalised matrix. We recommend setting this to true.
inputcheck	We recommend setting this to true.

Value

A normalised matrix of the same dimensions as the input matrix Y .

Author(s)

Yingxin Lin, John Ormerod, Kevin Wang

Examples

```
L = ruvSimulate(m = 200, n = 500, nc = 400, nCelltypes = 3, nBatch = 2, lambda = 0.1, sce = FALSE)
Y = L$Y; M = L$M; ctl = L$ctl
improved1 = scMerge::fastRUVIII(Y = Y, M = M, ctl = ctl,
k = 20, BSPARAM = BiocSingular::ExactParam())
improved2 = scMerge::fastRUVIII(Y = Y, M = M, ctl = ctl,
k = 20, BSPARAM = BiocSingular::RandomParam(), svd_k = 50)
old = ruv::RUVIII(Y = Y, M = M, ctl = ctl, k = 20)
all.equal(improved1, old)
all.equal(improved2, old)
```

`getAdjustedMat` *getAdjustedMat*

Description

Get Adjusted Matrix with `scMerge2` parameter estimated

Usage

```
getAdjustedMat(
  exprsMat,
  fullalpha,
  ctl = rownames(exprsMat),
  adjusted_means = NULL,
  ruvK = 20,
  return_subset_genes = NULL
)
```

Arguments

exprsMat	A gene (row) by cell (column) matrix to be adjusted.
fullalpha	A matrix indicates the estimated alpha returned by <code>scMerge2()</code> .
ctl	A character vector of negative control. It should have a non-empty intersection with the rows of <code>exprsMat</code> .
adjusted_means	A rowwise mean of the gene by cell matrix

ruvK	An integer indicates the number of unwanted variation factors that are removed, default is 20.
return_subset_genes	An optional character vector of indicates the subset of genes will be adjusted.

Value

Returns the adjusted matrix will be return.

Author(s)

Yingxin Lin

Examples

```
## Loading example data
data('example_sce', package = 'scMerge')
## Previously computed stably expressed genes
data('segList_ensemblGeneID', package = 'scMerge')
## Running an example data with minimal inputs
library(SingleCellExperiment)
scMerge2_res <- scMerge2(exprsMat = logcounts(example_sce),
batch = example_sce$batch,
ctl = segList_ensemblGeneID$mouse$mouse_scSEG,
return_matrix = FALSE)
cosineNorm_mat <- batchelor::cosineNorm(logcounts(example_sce))
adjusted_means <- DelayedMatrixStats::rowMeans2(cosineNorm_mat)
newY <- getAdjustedMat(cosineNorm_mat, scMerge2_res$fullalpha,
ctl = segList_ensemblGeneID$mouse$mouse_scSEG,
ruvK = 20,
adjusted_means = adjusted_means)
assay(example_sce, "scMerge2") <- newY

example_sce = scater::runPCA(example_sce, exprs_values = 'scMerge2')
scater::plotPCA(example_sce, colour_by = 'cellTypes', shape = 'batch')
```

ruvSimulate

Simulate a simple matrix or SingleCellExperiment to test internals of scMerge

Description

This function is designed to generate Poisson-random-variable data matrix to test on the internal algorithms of scMerge. It does not represent real biological situations and it is not intended to be used by end-users.

Usage

```
ruvSimulate(
  m = 100,
  n = 5000,
  nc = floor(n/2),
  nCelltypes = 3,
```

```

nBatch = 2,
k = 20,
lambda = 0.1,
sce = FALSE
)

```

Arguments

m	Number of observations
n	Number of features
nc	Number of negative controls
nCelltypes	Number of cell-types
nBatch	Number of batches
k	Number of unwanted factors in simulation
lambda	Rate parameter for random Poisson generation
sce	If TRUE, returns a SingleCellExperiment object

Value

If sce is FALSE, then the output is a list consists of

- Y, expression matrix generated through Poisson random variables,
- ctl, a logical vector indicating the control genes,
- M, replicate mapping matrix,
- cellTypes, a vector indicating simulated cell types
- batch, a vector indicating simulated batches

if sce is TRUE, a SingleCellExperiment wrapper will be applied on all above simulated objects.

Examples

```

set.seed(1)
L = ruvSimulate(m = 200, n = 1000, nc = 200,
nCelltypes = 3, nBatch = 2, lambda = 0.1, k = 10, sce = TRUE)
print(L)
example <- scMerge(sce_combine = L,
                     ctl = paste0('gene', 1:500),
                     cell_type = L$cellTypes,
                     ruvK = 10,
                     assay_name = 'scMerge')
L = scater::runPCA(L, exprs_values = "logcounts")
scater::plotPCA(L, colour_by = 'cellTypes', shape = 'batch')

example = scater::runPCA(example, exprs_values = 'scMerge')
scater::plotPCA(example, colour_by = 'cellTypes', shape = 'batch')

```

sce_cbind	<i>Combind several SingleCellExperiment objects from different batches/experiments</i>
-----------	--

Description

Combind several SingleCellExperiment objects from different batches/experiments.

Usage

```
sce_cbind(
  sce_list,
  method = "intersect",
  cut_off_batch = 0.01,
  cut_off_overall = 0.01,
  exprs = c("counts", "logcounts"),
  colData_names = NULL,
  batch_names = NULL
)
```

Arguments

sce_list	A list contains the SingleCellExperiment Object from each batch
method	A string indicates the method of combining the gene expression matrix, either union or intersect. Default to intersect. union only supports matrix class.
cut_off_batch	A numeric vector indicating the cut-off for the proportion of a gene is expressed within each batch
cut_off_overall	A numeric vector indicating the cut-off for the proportion of a gene is expressed overall data
exprs	A string vector indicating the expression matrices to be combined. The first assay named will be used to determine the proportion of zeroes.
colData_names	A string vector indicating the colData that are combined
batch_names	A string vector indicating the batch names for the output sce object

Value

A SingleCellExperiment object with the list of SCE objects combined.

Author(s)

Yingxin Lin

Examples

```
data('example_sce', package = 'scMerge')
batch_names<-unique(example_sce$batch)
sce_list<-list(example_sce[,example_sce$batch=='batch2'],
               example_sce[,example_sce$batch=='batch3'])
sce_combine<-sce_cbind(sce_list,batch_names=batch_names)
```

scMerge	<i>Perform the scMerge algorithm</i>
---------	--------------------------------------

Description

Merge single-cell RNA-seq data from different batches and experiments leveraging (pseudo)-replicates and control genes.

Usage

```
scMerge(
  sce_combine,
  ctl = NULL,
  kmeansK = NULL,
  exprs = "logcounts",
  hvg_exprs = "counts",
  batch_name = "batch",
  marker = NULL,
  marker_list = NULL,
  ruvK = 20,
  replicate_prop = 1,
  cell_type = NULL,
  cell_type_match = FALSE,
  cell_type_inc = NULL,
  BPARAM = ExactParam(),
  svd_k = 50,
  dist = "cor",
  WV = NULL,
  WV_marker = NULL,
  BPPARAM = SerialParam(),
  return_all_RUV = FALSE,
  assay_name = NULL,
  plot_igraph = TRUE,
  verbose = FALSE
)
```

Arguments

sce_combine	A SingleCellExperiment object contains the batch-combined matrix with batch info in colData.
ctl	A character vector of negative control. It should have a non-empty intersection with the rows of sce_combine.
kmeansK	A vector indicates the kmeans's K for each batch. The length of kmeansK needs to be the same as the number of batch.
exprs	A string indicating the name of the assay requiring batch correction in sce_combine, default is logcounts.
hvg_exprs	A string indicating the assay that to be used for highly variable genes identification in sce_combine, default is counts.
batch_name	A character indicating the name of the batch column, default to "batch"

marker	An optional vector of markers, to be used in calculation of mutual nearest cluster. If no markers input, highly variable genes will be used instead.
marker_list	An optional list of markers for each batch, which will be used in calculation of mutual nearest cluster.
ruvK	An optional integer/vector indicating the number of unwanted variation factors that are removed, default is 20.
replicate_prop	A number indicating the ratio of cells that are included in pseudo-replicates, ranges from 0 to 1. Default to 1.
cell_type	An optional vector indicating the cell type information for each cell in the batch-combined matrix. If it is NULL, pseudo-replicate procedure will be run to identify cell type.
cell_type_match	An optional logical input for whether to find mutual nearest cluster using cell type information.
cell_type_inc	An optional vector indicating the indices of the cells that will be used to supervise the pseudo-replicate procedure.
BSPARAM	A <code>BiocSingularParam</code> class object from the <code>BiocSingular</code> package is used. Default is <code>ExactParam()</code> .
svd_k	If <code>BSPARAM</code> is set to <code>RandomParam</code> or <code>Ir1baParam</code> class from <code>BiocSingular</code> package, then <code>svd_k</code> will be used to reduce the computational cost of singular value decomposition. Default to 50.
dist	The distance metrics that are used in the calculation of the mutual nearest cluster, default is Pearson correlation.
WV	A optional vector indicating the wanted variation factor other than cell type info, such as cell stages.
WV_marker	An optional vector indicating the markers of the wanted variation.
BPPARAM	A <code>BiocParallelParam</code> class object from the <code>BiocParallel</code> package is used. Default is <code>SerialParam()</code> .
return_all_RUV	If FALSE, then only returns a <code>SingleCellExperiment</code> object with original data and one normalised matrix. Otherwise, the <code>SingleCellExperiment</code> object will contain the original data and one normalised matrix for each <code>ruvK</code> value. In this latter case, <code>assay_name</code> must have the same length as <code>ruvK</code> .
assay_name	The assay name(s) for the adjusted expression matrix(matrices). If <code>return_all_RUV</code> = TRUE <code>assay_name</code> must have the same length as <code>ruvK</code> .
plot_igraph	If TRUE, then during the un/semi-supervised scMerge, igraph plot will be displayed
verbose	If TRUE, then all intermediate steps will be shown. Default to FALSE.

Value

Returns a `SingleCellExperiment` object with following components:

- assays: the original assays and also the normalised matrix
- metadata: containing the `ruvK` vector, `ruvK_optimal` based on F-score, and the replicate matrix

Author(s)

Yingxin Lin, Kevin Wang

Examples

```

## Loading example data
data('example_sce', package = 'scMerge')
## Previously computed stably expressed genes
data('segList_ensemblGeneID', package = 'scMerge')
## Running an example data with minimal inputs
sce_mESC <- scMerge(sce_combine = example_sce,
ctl = segList_ensemblGeneID$mouse$mouse_scSEG,
kmeansK = c(3, 3),
assay_name = 'scMerge')

sce_mESC = scater::runPCA(sce_mESC, exprs_values = "logcounts")
scater::plotPCA(sce_mESC, colour_by = 'cellTypes', shape = 'batch')

sce_mESC = scater::runPCA(sce_mESC, exprs_values = 'scMerge')
scater::plotPCA(sce_mESC, colour_by = 'cellTypes', shape = 'batch')

```

scMerge2

Perform the scMerge2 algorithm

Description

Merge single-cell data from different batches and experiments leveraging (pseudo)-replicates, control genes and pseudo-bulk.

Usage

```

scMerge2(
  exprsMat,
  batch,
  cellTypes = NULL,
  condition = NULL,
  ctl = rownames(exprsMat),
  chosen.hvg = NULL,
  ruvK = 20,
  use_bpparam = BiocParallel::SerialParam(),
  use_bsparam = BiocSingular::RandomParam(),
  use_bnparam = BiocNeighbors::AnnoyParam(),
  pseudoBulk_fn = "create_pseudoBulk",
  k_pseudoBulk = 30,
  k_celltype = 10,
  exprsMat_counts = NULL,
  cosineNorm = TRUE,
  return_subset = FALSE,
  return_subset_genes = NULL,
  return_matrix = TRUE,
  byChunk = TRUE,
  chunkSize = 50000,
  verbose = TRUE,
  seed = 1
)

```

Arguments

exprsMat	A gene (row) by cell (column) log-transformed matrix to be adjusted.
batch	A vector indicating the batch information for each cell in the batch-combined matrix.
cellTypes	An optional vector indicating the cell type information for each cell in the batch-combined matrix. If it is NULL, pseudo-replicate procedure will be run to identify cell type.
condition	An optional vector indicating the condition information for each cell in the batch-combined matrix.
ctl	A character vector of negative control. It should have a non-empty intersection with the rows of exprsMat
chosen.hvg	An optional character vector of highly variable genes chosen.
ruvK	An integer indicates the number of unwanted variation factors that are removed, default is 20.
use_bpparam	A <code>BiocParallelParam</code> class object from the <code>BiocParallel</code> package is used. Default is <code>SerialParam()</code> .
use-bsparam	A <code>BiocSingularParam</code> class object from the <code>BiocSingular</code> package is used. Default is <code>RandomParam()</code> .
use_bnparam	A <code>BiocNeighborsParam</code> class object from the <code>BiocNeighbors</code> package is used. Default is <code>AnnoyParam()</code> .
pseudoBulk_fn	A character indicates the way of pseudobulk constructed.
k_pseudoBulk	An integer indicates the number of pseudobulk constructed within each cell grouping. Default is 30.
k_celltype	An integer indicates the number of nearest neighbours used in <code>buildSNNGraph</code> when grouping cells within each batch. Default is 10.
exprsMat_counts	A gene (row) by cell (column) counts matrix to be adjusted.
cosineNorm	A logical vector indicates whether cosine normalisation is performed on input data.
return_subset	If TRUE, adjusted matrix of only a subset of genes (hvg or indicates in <code>return_subset_genes</code>) will be return.
return_subset_genes	An optional character vector of indicates the subset of genes will be adjusted.
return_matrix	A logical value indicates whether the adjusted matrix is calculated and returned.
byChunk	A logical value indicates whether it calculates the adjusted matrix by chunk
chunkSize	A numeric indicates the size of the chunk. If FALSE, then only the estimated parameters will be returned.
verbose	If TRUE, then all intermediate steps will be shown. Default to FALSE.
seed	A numeric input indicates the seed used.

Value

Returns a list object with following components:

- `newY`: if `return_matrix` is TRUE, the adjusted matrix will be return.
- `fullalpha`: Alpha estimated from the fastRUVIII model.
- `M`: Replicate matrix.

Author(s)

Yingxin Lin

Examples

```
## Loading example data
data('example_sce', package = 'scMerge')
## Previously computed stably expressed genes
data('segList_ensemblGeneID', package = 'scMerge')
## Running an example data with minimal inputs
library(SingleCellExperiment)
exprsMat <- scMerge2(exprsMat = logcounts(example_sce),
batch = example_sce$batch,
ctl = segList_ensemblGeneID$mouse$mouse_scSEG)
assay(example_sce, "scMerge2") <- exprsMat$newY

example_sce = scater::runPCA(example_sce, exprs_values = 'scMerge2')
scater::plotPCA(example_sce, colour_by = 'cellTypes', shape = 'batch')
```

scMerge2h

*Perform the scMerge2 (hierarchical) algorithm***Description**

Merge single-cell data hierarchically from different batches and experiments leveraging (pseudo)-replicates, control genes and pseudo-bulk.

Usage

```
scMerge2h(
  exprsMat,
  batch_list = list(),
  h_idx_list = list(),
  cellTypes = NULL,
  condition = NULL,
  ctl = rownames(exprsMat),
  chosen.hvg = NULL,
  ruvK_list = 20,
  use_bpparam = BiocParallel::SerialParam(),
  use_bsparam = BiocSingular::RandomParam(),
  use_bnparam = BiocNeighbors::AnnoyParam(),
  pseudoBulk_fn = "create_pseudoBulk",
  k_pseudoBulk = 30,
  k_celltype = 10,
  exprsMat_counts = NULL,
  cosineNorm = TRUE,
  return_subset = FALSE,
  return_subset_genes = NULL,
  return_matrix = TRUE,
  verbose = TRUE,
  seed = 1
)
```

Arguments

exprsMat	A gene (row) by cell (column) log-transformed matrix to be adjusted.
batch_list	A list indicating the batch information for each cell in the batch-combined matrix.
h_idx_list	A list indicating the indeces information in the hierarchical merging.
cellTypes	An optional vector indicating the cell type information for each cell in the batch-combined matrix. If it is NULL, pseudo-replicate procedure will be run to identify cell type.
condition	An optional vector indicating the condition information for each cell in the batch-combined matrix.
ctl	A character vector of negative control. It should have a non-empty intersection with the rows of exprsMat
chosen.hvg	An optional character vector of highly variable genes chosen.
ruvK_list	An integer indicates the number of unwanted variation factors that are removed, default is 20.
use_bpparam	A <code>BiocParallelParam</code> class object from the <code>BiocParallel</code> package is used. Default is <code>SerialParam()</code> .
use_bsparam	A <code>BiocSingularParam</code> class object from the <code>BiocSingular</code> package is used. Default is <code>RandomParam()</code> .
use_bnparam	A <code>BiocNeighborsParam</code> class object from the <code>BiocNeighbors</code> package is used. Default is <code>AnnoyParam()</code> .
pseudoBulk_fn	A character indicates the way of pseudobulk constructed.
k_pseudoBulk	An integer indicates the number of pseudobulk constructed within each cell grouping. Default is 30.
k_celltype	An integer indicates the number of nearest neighbours used in <code>buildSNNGraph</code> when grouping cells within each batch. Default is 10.
exprsMat_counts	A gene (row) by cell (column) counts matrix to be adjusted.
cosineNorm	A logical vector indicates whether cosine normalisation is performed on input data.
return_subset	If TRUE, adjusted matrix of only a subset of genes (hvg or indicates in <code>return_subset_genes</code>) will be return.
return_subset_genes	An optional character vector of indicates the subset of genes will be adjusted.
return_matrix	A logical vector indicates whether the adjusted matrix is calculated and returned. If FALSE, then only the estimated parameters will be returned.
verbose	If TRUE, then all intermediate steps will be shown. Default to FALSE.
seed	A numeric input indicates the seed used.

Author(s)

Yingxin Lin

Examples

```

## Loading example data
data('example_sce', package = 'scMerge')
## Previously computed stably expressed genes
data('segList_ensemblGeneID', package = 'scMerge')

# Create a fake sample information
example_sce$sample <- rep(c(1:4), each = 50)

# Construct a hierarchical index list
h_idx_list <- list(level1 = split(1:200, example_sce$batch),
                    level2 = list(1:200))

# Construct a batch information list
batch_list <- list(level1 = split(example_sce$sample, example_sce$batch),
                    level2 = list(example_sce$batch))
library(SingleCellExperiment)
exprsMat <- scMerge2h(exprsMat = logcounts(example_sce),
batch_list = batch_list,
h_idx_list = h_idx_list,
ctl = segList_ensemblGeneID$mouse$mouse_scSEG,
ruvK_list = c(2, 5))
assay(example_sce, "scMerge2") <- exprsMat[[length(h_idx_list)]]
example_sce = scater:::runPCA(example_sce, exprs_values = 'scMerge2')
scater:::plotPCA(example_sce, colour_by = 'cellTypes', shape = 'batch')

```

scReplicate

Create replicate matrix for scMerge algorithm

Description

Create replicate matrix for scMerge algorithm using un-/semi-/supervised approaches.

Usage

```

scReplicate(
  sce_combine,
  batch = NULL,
  kmeansK = NULL,
  exprs = "logcounts",
  hvg_exprs = "counts",
  marker = NULL,
  marker_list = NULL,
  replicate_prop = 1,
  cell_type = NULL,
  cell_type_match = FALSE,
  cell_type_inc = NULL,
  dist = "cor",
  WV = NULL,
  WV_marker = NULL,
  BPPARAM = SerialParam(),

```

```

  return_all = FALSE,
  BSPARAM = ExactParam(),
  plot_igraph = TRUE,
  verbose = FALSE
)

```

Arguments

sce_combine	A SingleCellExperiment object contains the batch-combined matrix with batch info in colData
batch	A vector indicates the batch information for each cell in the batch-combined matrix.
kmeansK	A vector indicates the kmeans's K for each batch, length of kmeansK needs to be the same as the number of batch.
exprs	A string indicates the assay that are used for batch correction, default is log-counts
hvg_exprs	A string indicates the assay that are used for highly variable genes identification, default is counts
marker	A vector of markers, which will be used in calculation of mutual nearest cluster. If no markers input, highly variable genes will be used instead
marker_list	A list of markers for each batch, which will be used in calculation of mutual nearest cluster.
replicate_prop	A number indicating the ratio of cells that are included in pseudo-replicates, ranges from 0 to 1. Default to 1.
cell_type	A vector indicates the cell type information for each cell in the batch-combined matrix. If it is NULL, pseudo-replicate procedure will be run to identify cell type.
cell_type_match	Whether find mutual nearest cluster using cell type information
cell_type_inc	A vector indicates the indices of the cells that will be used to supervise the pseudo-replicate procedure
dist	The distance metrics that are used in the calculation of the mutual nearest cluster, default is Pearson correlation.
WV	A vector indicates the wanted variation factor other than cell type info, such as cell stages.
WV_marker	A vector indicates the markers of the wanted variation.
BPPARAM	A BiocParallelParam class object from the BiocParallel package is used. Default is SerialParam().
return_all	If FALSE, only return the replicate matrix.
BSPARAM	A BiocSingularParam class object from the BiocSingular package is used. Default is ExactParam().
plot_igraph	If TRUE, then during the un/semi-supervised scMERge, igraph plot will be displayed
verbose	If TRUE, then all intermediate steps will be shown. Default to FALSE.

Value

If `return_all` is FALSE, return a replicate matrix. If `return_sce` is TRUE, return the followings

<code>repMat</code>	replicate matrix
<code>mnc</code>	mutual nearest cluster
<code>replicate_vector</code>	replicate vector
<code>HVG</code>	highly variable genes used in <code>scReplicate</code>

A cell-replicates mapping matrix. Each row correspond to a cell from the input expression matrix, and each column correspond to a cell-cluster/cell-type. An element of the mapping matrix is 1 if the `scReplicate` algorithm determines that this cell should belong to that cell cluster and 0 otherwise.

Author(s)

Yingxin Lin, Kevin Wang

Examples

```
## Loading example data
set.seed(1)
data('example_sce', package = 'scMerge')
scRep_result = scReplicate(
  sce_combine = example_sce,
  batch = example_sce$batch,
  kmeansK = c(3,3))
```

scRUVg

RUVg function for single cell (under development)

Description

Modified based on RUV2 from package `ruv` and RUVg from package `RUVRSeq` function (see these function's documentation for full documentations and usage)

Usage

```
scRUVg(
  Y,
  ctl,
  k,
  Z = 1,
  eta = NULL,
  include.intercept = TRUE,
  fullW = NULL,
  svdyc = NULL
)
```

Arguments

Y	The data. A m by n matrix, where m is the number of observations and n is the number of features.
ctl	index vector to specify the negative controls.
k	The number of unwanted factors to use.
Z	Any additional covariates to include in the model.
eta	Gene-wise (as opposed to sample-wise) covariates.
include.intercept	Applies to both Z and eta. When Z or eta (or both) is specified (not NULL) but does not already include an intercept term, this will automatically include one. If only one of Z or eta should include an intercept, this variable should be set to FALSE, and the intercept term should be included manually where desired.
fullW	Can be included to speed up execution. Is returned by previous calls of scRUVg
svdyc	Can be included to speed up execution. For internal use; please use fullW instead.

Value

A list consists of:

- A matrix newY, the normalised matrix,
- A matrix W, the unwanted variation matrix, and ;
- A matrix alpha, this corresponding coefficient matrix for W.

Author(s)

Yingxin Lin, Kevin Wang

Examples

```
L = scMerge:::ruvSimulate(m = 80, n = 1000, nc = 50, nCelltypes = 10)
Y = L$Y; ctl = L$ctl
ruvgRes = scMerge:::scRUVg(Y = Y, ctl = ctl, k = 20)
```

Description

A function to perform location/scale adjustment to data as the input of RUVIII which also provides the option to select optimal RUVk according to the silhouette coefficient

Usage

```
scRUVIII(
  Y = Y,
  M = M,
  ctl = ctl,
  fullalpha = NULL,
  k = k,
  cell_type = NULL,
  batch = NULL,
  return_all_RUV = TRUE,
  BPPARAM = SerialParam(),
  BSPARAM = ExactParam(),
  svd_k = 50
)
```

Arguments

Y	The unnormalised SC data. A m by n matrix, where m is the number of observations and n is the number of features.
M	The replicate mapping matrix. The mapping matrix has m rows (one for each observation), and each column represents a set of replicates. The (i, j)-th entry of the mapping matrix is 1 if the i-th observation is in replicate set j, and 0 otherwise. See <code>ruv::RUVIII</code> for more details.
ctl	An index vector to specify the negative controls. Either a logical vector of length n or a vector of integers.
fullalpha	Not used. Please ignore.
k	The number of unwanted factors to remove. This is inherited from the <code>ruvK</code> argument from the <code>scMerge::scMerge</code> function.
cell_type	An optional vector indicating the cell type information for each cell in the batch-combined matrix. If it is NULL, pseudo-replicate procedure will be run to identify cell type.
batch	Batch information inherited from the <code>scMerge::scMerge</code> function.
return_all_RUV	Whether to return extra information on the RUV function, inherited from the <code>scMerge::scMerge</code> function
BPPARAM	A <code>BiocParallelParam</code> class object from the <code>BiocParallel</code> package is used. Default is <code>SerialParam()</code> .
BSPARAM	A <code>BiocSingularParam</code> class object from the <code>BiocSingular</code> package is used. Default is <code>ExactParam()</code> .
svd_k	If <code>BSPARAM</code> is set to <code>RandomParam</code> or <code>IrqlbaParam</code> class from <code>BiocSingular</code> package, then <code>svd_k</code> will be used to reduce the computational cost of singular value decomposition. Default to 50.

Value

A list consists of:

- RUV-normalised matrices: If k has multiple values, then the RUV-normalised matrices using all the supplied k values will be returned.
- `optimal_ruvK`: The optimal RUV k value as determined by silhouette coefficient.

Author(s)

Yingxin Lin, Kevin Wang

Examples

```
L = ruvSimulate(m = 200, n = 1000, nc = 100, nCelltypes = 3, nBatch = 2, lambda = 0.1, sce = FALSE)
Y = t(log2(L$Y + 1L)); M = L$M; ctl = L$ctl; batch = L$batch;
res = scRUVIII(Y = Y, M = M, ctl = ctl, k = c(5, 10, 15, 20), batch = batch)
```

scSEGIndex

Single Cell Stably Express Gene Index

Description

This function computes the single-cell Stably Expressed Gene (scSEG) index from Lin. et al. (2019) for a given single-cell count data matrix. Each gene in the data is fitted with a gamma-normal mixture model and the final SEG index is computed as an average of key parameters that measure the expression stability of a gene.

We recommend using either the pre-computed genes (see "See Also" below) or the top SEG genes from an user's own data as the control genes in the scMerge function (see the `ctl` argument in the `scMerge` function).

Usage

```
scSEGIndex(
  exprs_mat,
  cell_type = NULL,
  BPPARAM = SerialParam(progressbar = TRUE),
  return_all = FALSE
)
```

Arguments

<code>exprs_mat</code>	A log-transformed single-cell data, assumed to have no batch effect and covered a wide range of cell types. A <code>n</code> by <code>m</code> matrix, where <code>n</code> is the number of genes and <code>m</code> is the number of cells.
<code>cell_type</code>	A vector indicating the cell type information for each cell in the gene expression matrix. If it is <code>NULL</code> , the function calculates the scSEG index without using F-statistics.
<code>BPPARAM</code>	A <code>BiocParallelParam</code> class object from the <code>BiocParallel</code> package is used. Default is <code>SerialParam(progressbar = TRUE)</code> .
<code>return_all</code>	Default to <code>FALSE</code> . If set to <code>TRUE</code> , then all genes will be returned. Otherwise, only genes with less than 80 percent zeroes will be returned.

Value

Returns a data frame. Each row is a gene and each column is a statistic relating to the stability of expression of each gene. The main statistic is the `segIdx` column, which is the SEG index.

Author(s)

Shila Ghazanfar, Yingxin Lin, Pengyi Yang

References

Evaluating stably expressed genes in single cells (2019). doi:10.1093/gigascience/giz106.

See Also

Download human SEG directly from this [link](#); Download mouse SEG directly from this [link](#).

Examples

```
## Loading example data
data('example_sce', package = 'scMerge')
## subsetting genes to illustrate usage.
exprs_mat = SummarizedExperiment::assay(example_sce, 'logcounts')[1:110, 1:20]
set.seed(1)
result1 = scSEGIndex(exprs_mat = exprs_mat)
## If parallelisation is needed:
param = BiocParallel::MulticoreParam(workers = 2, progressbar = TRUE)
result2 = scSEGIndex(exprs_mat = exprs_mat, BPPARAM = param)
## Closing the parallelisation
BiocParallel::register(BPPARAM = BiocParallel::SerialParam())
```

segList

Stably expressed gene list in official gene symbols for both human and mouse

Description

A list includes the stably expressed genes for both human and mouse

Usage

```
data(segList, package = 'scMerge')
```

Format

An object of class `list` of length 2.

segList_ensemblGeneID *Stably expressed gene list in EnsemblGeneID for both human and mouse*

Description

A list includes the stably expressed genes for both human and mouse

Usage

```
data(segList_ensemblGeneID, package = 'scMerge')
```

Format

An object of class `list` of length 2.

Index

* **datasets**
example_sce, 2
segList, 20
segList_ensemblGeneID, 21

example_sce, 2

fastRUVIII, 3

getAdjustedMat, 4

ruvSimulate, 5

sce_cbind, 7
scMerge, 8
scMerge2, 10
scMerge2h, 12
scReplicate, 14
scRUVg, 16
scRUVIII, 17
scSEGIndex, 19
segList, 20
segList_ensemblGeneID, 21